# Earned Schealule Training 

## Instructors

## Walt Lipke

waltilipke@cox.net
(405) 364-1594

Kym Henderson
Education Director
PMI Sydney, Australia Chapter
kym.henderson@froggy.com.au 61414428537

## Earned Schedule Training - Part I

$\lrcorner$ EVM Schedule Indicators
$\lrcorner$ Introduction to Earned Schedule

- Concept \& Metrics
- Indicators
- Predictors

Terminology

- Concept Verification

Earned Schedule Training - Part I
Prediction Comparisons

- Demonstration of ES Calculator

Analysis Tool Demonstration
$\lrcorner$ Interpolation Error

## Earned Schedule Training - Part II

$\lrcorner$ Re-Baseline Effects

- Critical Path Study

Network Schedule Analysis

- Impediments / Constraints
- Rework
- Schedule Adherence

Earned Schedule Training - Part II
$\lrcorner$ Effective Earned Value

- Derivation
- Indicators
- Prediction
$\lrcorner$ Available Resources
Wrap-Up


# Earned Schedule Training Part I 

# Earned Value Management Schedule Indicators 

## EVM Schedule Indicators



Time

17th IIPMC Nov 7-9, 2005

## EVM Schedule Indicators

$\lrcorner$ SV \& SPI behave erratically for projects behind schedule
SPI improves and concludes at 1.00 at end of project
SV improves and concludes at \$0 variance at end of project
Schedule indicators lose predictive ability over the last third of the project

## EVM Schedule Indicators

- Why does this happen?
- SV = BCWP - BCWS
- SPI = BCWP / BCWS
$\lrcorner$ At planned completion BCWS = BAC
- At actual completion BCWP = BAC
- When actual > planned completion
$-S V=B A C-B A C=\$ 000$
- SPI = BAC / BAC = 1.00

Regardless of lateness !!

# Introduction to Earned Schedule 

## Earned Schedule Concept



Time

17th IIPMC
Nov 7-9, 2005

Copyright 2005
Lipke \& Henderson

## Earned Schedule Metrics

## - Required measures

- Performance Management Baseline (PMB) the time phased planned values (BCWS) from project start to completion
- Earned Value (BCWP) - the planned value which has been "earned"
- Actual Time (AT) - the actual time duration from the project beginning to the time at which project status is assessed
All measures available from EVM


## Earned Schedule Metrics

EScum is the:
Number of completed BCWS time increments BCWP exceeds + the fraction of the incomplete BCWS increment
$\mathrm{ES}_{\text {cum }}=\mathrm{C}+$ I where:
$C=$ number of time increments for BCWP $\geq$ BCWS
$I=\left(B C W P-B C W S_{C}\right) /\left(B C W S_{C+1}-B C W S_{C}\right)$
$\lrcorner$ ESperiod $(n)=\operatorname{EScum}(n)-\operatorname{EScum}(n-1)=\Delta E S_{c u m}$
ATcum
ATperiod $(n)=\operatorname{ATcum}(n)-\operatorname{ATcum}(n-1)=\Delta A T_{\text {cum }}$
$\Delta A T_{\text {cum }}$ is normally equal to 1

## Earned Schedule Indicators

Schedule Variance: SV(t)

- Cumulative: $S V(t)=E S_{\text {cum }}-A T_{\text {cum }}$
- Period: $\Delta \mathrm{SV}(\mathrm{t})=\Delta \mathrm{ES}_{\text {cum }}-\Delta \mathrm{AT}_{\text {cum }}$

Schedule Performance Index: SPI(t)

- Cumulative: $\operatorname{SPI}(\mathrm{t})=\mathrm{ES}_{\text {cum }} / \mathrm{AT}_{\text {cum }}$
- Period: $\Delta \operatorname{SPI}(\mathrm{t})=\Delta \mathrm{ES}_{\text {cum }} / \Delta \mathrm{AT} \mathrm{c}_{\text {cum }}$


## Earned Schedule Indicators

What happens to the ES indicators, SV(t) \& SPI(t), when the planned project duration (PD) is exceeded (BCWS = BAC)?

They Still Work ...Correctly!!
ES will be $\leq$ PD, while AT > PD

- SV(t) will be negative (time behind schedule)
- SPI(t) will be < 1,00

Reliable Values from Start to Finish !!

## SV Comparison




17th IIPMC
Nov 7-9, 2005

Copyright 2005
Lipke \& Henderson

## SPI Comparison




[^0]Copyright 2005
Lipke \& Henderson

## Earned Schedule Predjictors

Can the project be completed as planned?

- TSPI = Plan Remaining / Time Remaining

$$
=(P D-E S) /(P D-A T)
$$

where $(P D-E S)=$ PDWR
PDWR = Planned Duration for Work Remaining

- TSPI $=(P D-E S) /(E D-A T)$
where ED = Estimated Duration

| TSPI Value | Predicted Outcome |
| :---: | :---: |
| $\leq 1.00$ | Achievable |
| $>1.10$ | Not Achievable |

## Earned Schedule Predictors

Long time goal of EVM ...Prediction of total project duration from present schedule status
Independent Estimate at Completion (time)

- IEAC( t$)=$ PD $/ \operatorname{SPI}(\mathrm{t})$
$-\mathrm{IEAC}(\mathrm{t})=\mathrm{AT}+(\mathrm{PD}-E S) / P F(\mathrm{t})$ where $P F(t)$ is the Performance Factor (time)
- Analogous to IEAC used to predict final cost
-Independent Estimated Completion Date (IECD)
- IECD $=$ Start Date + IEAC(t)


## Earned Schedule Terminology

|  | EVM | Earned Schedule |
| :---: | :---: | :---: |
| Status | Earned Value (EV) | Earned Schedule (ES) |
|  | Actual Costs (AC) | Actual Time (AT) |
|  | SV | SV(t) |
|  | SPI | SPI(t) |
| Future Work | Budgeted Cost for Work Remaining (BCWR) | Planned Duration for Work Remaining (PDWR) |
|  | Estimate to Complete (ETC) | Estimate to Complete (time) ETC(t) |
| Prediction | Variance at Completion (VAC) | Variance at Completion (time) VAC(t) |
|  | Estimate at Completion (EAC) (supplier) | Estimate at Completion (time) EAC(t) (supplier) |
|  | Independent EAC (IEAC) (customer) | Independent EAC (time) IEAC(t) (customer) |
|  | To Complete Performance Index (TCPI) | To Complete Schedule Performance Index (TSPI) |

## Earned Schedule Terminology

| Metrics | Earned Schedule | ES ${ }_{\text {cum }}$ | ES = C + I number of complete periods (C) plus an incomplete portion (I) |
| :---: | :---: | :---: | :---: |
|  | Actual Time | AT $\mathrm{cum}_{\text {cum }}$ | AT = number of periods executed |
| Indicators | Schedule Variance | SV(t) | $\mathrm{SV}(\mathrm{t})=\mathrm{ES}-\mathrm{AT}$ |
|  | Schedule Performance Index | SPI(t) | $\mathbf{S P I}(\mathrm{t})=\mathrm{ES} / \mathrm{AT}$ |
|  | To Complete Schedule Performance Index | TSPI(t) | TSPI(t) = (PD - ES) / (PD - AT) |
|  |  |  | TSPI(t) $=(\mathrm{PD}-\mathrm{ES}) /(\mathrm{ED}-\mathrm{AT})$ |
| Predictors | Independent Estimate at Completion (time) | IEAC(t) | $\operatorname{IEAC}(\mathrm{t})=\mathrm{PD} / \mathrm{SPI}(\mathrm{t})$ |
|  |  |  | $\operatorname{IEAC}(\mathrm{t})=\mathrm{AT}+(\mathrm{PD}-\mathrm{ES}) / \mathrm{PF}$ |

## Earned Schedule Key Points

ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI

- SV(t) and SPI(t)
- Not constrained by BCWS calculation reference
- Provide duration based measures of schedule performance
- Valid for entire project, including early and late finish
- Facilitates integrated Cost/Schedule Management (using EVM with ES)


## Concept Verification

## ES Applied to Real Project Data: Late Fitnish Project: SV(\$) and SV(t)

Commercial IT Infrastructure Expansion Project Phase 1
Cost and Schedule Variances
at Project Projection: Week Starting 15th July xx
$\rightarrow$ CV cum $\rightarrow-$ SV cum $\rightarrow$ Target SV \& CV $*$ SV ( t cum


17th IIPMC
Nov 7-9, 2005

Copyright 2005
Lipke \& Henderson

## ES Applied to Real Project Data:

 Late Finuish Project Analysis- No EVMI data prior to week 11
$\lrcorner$ SV(\$) and SV(t) show strong correlation until week 19
- Week 20 (The week of the project's scheduled completion) Client delay halted project progress until resolution in Week 26
- SV(\$) static at $-\$ 17,500$ in spite of schedule delay

Before trending to $\$ 0$ at proiect completion

- SV(t) correctly calculates and displays
- Week on week schedule delay
- Project - 14 week schedule delay at completion
$\lrcorner$ Conclusion
SV(t) provides greater management utility than SV(\$) for portraying and analyzing schedule performance


## Early Finish Project: SV(\$) and SV(t)

## Commerical IT Infrastructure Expansion Project: Phases 2 \& 3 Combined Cost and Schedule Variances

as at Project Completion: Week Starting 9th October xx



## Early Finish Project Analysis

- This project completed 3 weeks ahead of schedule
- In spite of externally imposed delay between weeks 16 and 19
$\lrcorner S V(\$)$ and $S V(t)$ show strong correlation over life of project
- Including the delay period
- SV(t)'s advantage is calculating delay as a measure of duration
- With Darly Finish projects
- ES metrics SV( t$)$ and $\operatorname{SPI}(\mathrm{t})$ have behaved consistently with their historic EVM counterparts
- Conclusion

SV(t) provides greater management utility than SV(\$) for portraying and analyzing schedule performance

## Prediction Comparisons

Calculation of IDAC(t): short form

## IEAC( $\mathbf{t})=$ Planned Duration $/$ SPI( $\mathbf{t})$

- Planned Duration for Work Remaining

PDWR = Planned Duration - Earned Schedule cum
Analogous to the EVM BCWR
Calculation of IDAC( $t$ ): long form

$$
\operatorname{IEAC}(\mathbf{t})=\text { Actual Time }+\left(\frac{\text { PDWR }}{\text { Performance Factor }}\right)
$$

## IEAC(t) Prediction Comparison

 Early and Late Finish Project Examples| IEAC( t$)$ <br> Metrics at Project Completion <br> Early Finish Project |  |  |
| ---: | :---: | :---: |
| Planned Duration (weeks) | 25 |  |
| Actual Time (weeks) | 22 |  |
| Percentage Complete cum | $100 \%$ |  |
| CPI cum | 2.08 |  |
| SPI(t) cum | 1.14 |  |
| SPI(\$) cum | 1.17 |  |
| Critical Ratio cum | 2.43 |  |
| IEAC(t) PD/SPI(t) cum | 22.0 |  |
| IEAC(t) PD/SPI(\$) cum | 21.4 |  |
| IEAC(t) PD/CR cum | 10.3 |  |
|  |  |  |


| IEAC(t) Metrics at Project Completion |  |
| ---: | :---: |
| Late Finish Project - pre ES |  |
| Planned Duration (weeks) | 20 |
| Actual Time (weeks) | 34 |
| Percentage Complete cum | $100 \%$ |
| CPI cum | 0.52 |
| SPI(t) cum | 0.59 |
| SPI(\$) cum | 1.00 |
| Critical Ratio cum | 0.52 |
| IEAC(t) PD/SPI(t) cum | 34.0 |
| IEAC(t) PD/SPI(\$) cum | 20.0 |
| IEAC(t) PD/ CR cum | 38.7 |

In both examples, the pre LS predictors (in red) fail to correctly calculate the Actual Duration at Completion!

- The ES predictor, SPI(t) alone correctly calculates the Actual Duration at Completion in both cases

[^1]Copyright 2005
Lipke \& Henderson

## "Further Developments"

## in Darned Schedule

## Schedule Duration Prediction (constinneat)

Pre ES formulae and results algebraically flawed
©... there is lititle theoretical justificarion for EVMMI practitioners continuing to use the pre ES predictors of schedule performance. Conversion to and use of the ES based techniques is strongly recommended."

- Kym Henderson

There's got to be a better method! Same Early and Late Finish Project Examples

| IEAC(t) Metrics at Project Completion Early Finish Project using ES |  |
| :---: | :---: |
| Planned Duration (weeks) | 25 |
| Actual Time (weeks) | (22) |
| Earned Schedule cum | 25.0 |
| Planned Duration Work Remaining | 0.0 |
| Percentage Complete cum | 100\% |
| CPI cum | 2.08 |
| SPI(t) cum | 1.14 |
| SPI(\$) cum | 1.17 |
| Critical Ratio cum | 2.43 |
| Critical Ratio ES cum | 2.37 |
| IEAC(t) PF = SPI(t) cum | 22.0 |
| IEAC(t) PF = SPI(\$) cum | 22.0 |
| IEAC $(\mathrm{t}) \mathrm{PF}=\mathrm{CR} \mathrm{cum}$ | 22.0 |
| IEAC (t) PF = CR ES cum | 22.0 |


| IEAC(t) Metrics at Project Completion <br> Late Finish Project using ES |  |
| ---: | :---: |
| Planned Duration (weeks) | 20 |
| Actual Time (weeks) | 34 |
| Earned Schedule cum | 20.0 |
| Planned Duration Work |  |
| Remaining | 0.0 |
| Percentage Complete cum | $100 \%$ |
| CPI cum | 0.53 |
| SPI(t) cum | 0.59 |
| SPI(\$) cum | 1.00 |
| Critical Ratio cum | 0.52 |
| Critical Ratio ES cum | 0.30 |
| IEAC(t) PF = SPI(t) cum | 34.0 |
| IEAC(t) PF = SPI(\$) cum | 34.0 |
| IEAC(t) PF = CR cum | 34.0 |
| IEAC(t) PF = CR ES cum | 34.0 |

Use of the ES "long form" IEAC( t$)$ formula, results in correct calculation of Actual Duration at Completion

17th IIPMC
Nov 7-9, 2005

## IILAC(t) Predictions using ES Techniques: Weekly Plots of IIEAC(t) Late Finish Project Example



17th IIPMC
Nov 7-9, 2005

Copyright 2005
Lipke \& Henderson

## IIDCD Predictions using

## ES Techniques: Weekly Plots of

Independent Estimate of Completion Date

## Commercial IT Infrastructure Expansion Project Phase 1 <br> Earned Schedule, Independent Estimates of Completion Date (IECD) as at Project Completion: Week Starting 15th July xx



17th IIPMC
Nov 7-9, 2005
Copyright 2005
Lipke \& Henderson

## IIAC(t) Predictions using LS Techniques:

$\square$ ES formulae and results are algebraically correct
"Whilst assessments of the prealictive utility of the ES calculatied IEAC( $t$ ) and the relative merits of using the various performance factors anailable are matiters for further research anal empinic validation, the theoretical integrity of ES now seems confinmed."

- Kym Henderson



## 2 My Experience Summarised

Schedule Performance Indicators (for early and late finish projects):

- $\operatorname{SPI}(\mathrm{t}) \& \mathrm{SV}(\mathrm{t})$ do portray the real schedule performance
- in agreement with [1] [2]

Forecasting Duration (for early and late finish projects):

- at early \& middle project stage: pre-ES \& ES forecasts produce similar results
- at late project stage: ES forecasts outperform all pre-ES forecasts
- in agreement with [2] [3]

Assessing Project Duration (for early and late finish projects):

- the use of the $\operatorname{SPI}(\mathrm{t})$ in conjunction with the $\operatorname{TCSPI}(\mathrm{t})$ has been demonstrated to be useful to manage the schedule expectations
- application of [3]
[1] Lipke Walt, Schedule is Different, The Measurable News, Summer 2003
[2] Henderson Kym, Earned Schedule: A Breakthrough Extension to Earned Value Theory? A
Retrospective Analysis of Real Project Data, The Measurable News, Summer 2003
[3] Henderson, Kym, Further Development in Earned Schedule, The Measurable News, Spring 2004


# Demonstration of Earned Schedule Calculator 

## Earned Schedule Calculatior



## Analysis Tool Demonstration

## Earned Schedule Analysis Tool



## Interpolation Error

## Interpolation Error

$\lrcorner$ The PMB is an S-Curve. Does the linear interpolation introduce large ES error?
$\lrcorner$ Is error larger where the $S$-Curve is steepest?
What affects the accuracy of the ES calculation?

## Interpolation Error


$I / 1 m o=p / q$
$I=(p / q) * 1 m o$
$p=B C W P-B_{C W S}^{C}$
$\mathrm{q}=\mathrm{BCWS}_{\mathrm{C}+1}-\mathrm{BCWS}_{\mathrm{C}}$
$I=\frac{B C W P-B C W S_{C}}{B C W S_{C+1}-B C W S_{C}} * 1 \mathrm{mo}$

## Interpolation Error



> ES = Number of whole months $(C)+$ Increment on curve (F)
> $=C+F$
> ES(calc) $=C+$ calculated increment (I)

Error $(\delta)=I-F$
$\%$ error $=\frac{|\delta|}{C+F}$
Example $=.05 / 8.12=0.6 \%$
As $C \Rightarrow$ larger

- \% error $\Rightarrow$ smaller
- ES(calc) $\Rightarrow$ more accurate

Weekly EV make ES more accurate

[^2]Copyright 2005
Lipke \& Henderson

## Interpolation Error

After a few months of status $(C>4)$ interpolation error is negligible ( $\leq 3 \%$ )
What about central portion of PMB, where S-Curve is steepest? Is error greater?

- Where slope is large, the resolution of the interpolation is maximized
- Curvature of $P M B$ is minimized - Interpolation error is negligible


## Other Sources of Error

- Partial Month $-1^{\text {st }}$ month
- Much more significant than interpolation error
- Error decreases as C becomes larger
- Correctable - adjust calculator output
- Earned Value recorded
- By far, the largest source of ES error
- Low accuracy for EV $\Rightarrow$ inaccurate ES


# Earned Schedule Training Part II 

## ES and Re-Baselining

## ES and Re-Baselining

$\lrcorner$ ES indicators are affected by re-baselining - Behaviour of $\operatorname{SV}(t)$ and SPI( t ) is analogous to CV and CPI
See examples
PMB change affects schedule prediction similarly to cost
Earned Schedule brings aittention to the potential schedule impact of a declared "cost only" change

College of Performance Management

## Earned Schedule - Re-Baseline Example Real project clatal - nominal re-baseline



## Earned Schedule - Re-Baseline Example

 $C V, S V(\$)$ and $S V(t)$

# Critical Path Study 

## Critical Path Study Outline

$\lrcorner$ The Scheduling Challenge

- Case Study Project
- The project
- The EVM, Earned Schedule and Network Schedule approach
$\perp$ Earned Schedule vs Critical Path predictors
$\lrcorner$ Real Schedule Management with Earned Schedule
- Initial experience and observation


## The Scheduling Challenge

- A realistic project schedule is dependent on multiple, often complex factors including accurate:
- Estimation of the tasks required,
- Estimates of the task durations
- Resources required to complete the identified tasks
$\lrcorner$ Identification and modeling of dependencies impacting the execution of the project
- Task dependencies (e.g. F-S process flows)
- "Dependent" Milestones (internal and external)
- "Other logic"


## The Scheduling Challenge

From small projects into large projects and programs, scheduling requirements becomes exponentially more complex
$\lrcorner$ Integration
Of schedules between "master" and "subordinate" schedules
-Often across multiple tiers of
$\Delta$ Activities and

- Organisations
contributing to the overall program of work
Essential for producing a useful integrated master schedule


## To further compound schedule complexity

Once an initial schedule baseline has been established progress monitoring inevitably results in changes

Task and activity durations change because "actual performance" does not conform to plan
Additional unforeseen activities may need to be added
-Logic changes as a result of corrective actions to contain slippages; and
Improved understanding of the work being undertaken
-Other "planned changes" (Change Requests) also contribute to schedule modifications over time

## Wouldn't it be nice ....

To be able to explicitly declare "Schedule Reserve" in the project "schedule of record"

- Protect committed key milestone delivery dates

To have schedule macro level indicators and predictors

- Ideally, derived separately from the network schedule!
- Provides a means for comparison and validation of the measures and predictors provided by the network schedule
- An independent predictor of project duration would be a particularly useful metric
" "On time" completion of projects usually considered important


## Just like EVM practitioners have for cost un The potential offered by Earned Schedule

## Case Study Project

- Commercial sector software development and enhancement project
Small scale: 10 week Planned Duration
- Time critical: Needed to support launch of revenue generating marketing campaign
- Cost budget: $100 \%$ labour costs
- Mixture off:
- 3 tier client server development

Mainfirame, Middleware, Workstation

- 2 tier client server development Mainframe to Workstation direct

Copyright 2005
Lipke \& Henderson

## The EVM and ES Approach

Microsoft Project 2002 schedule

- Resource loaded for time phased effort and cost estimation
Control Account - Work Package views developed in the schedule
Actual Costs captured in SAP time recording system
- Limited (actual) cost - schedule integration
-Contingency (Management Reserve) managed outside the schedule
Top level Planned Values cum "copied and pasted" into Excel EVM and ES template

H High level of cost - schedule integration achieved

## Schedule Management

Weekly schedule updates from week 3 focusing on:
Accurate task level percentage work completion updates
The project level percentage work completion (cumulative) calculated by Microsoft Project
Percentage work complete transferired to the EVM and ES template to derive the progressive Eanned Value (cumulative) measure Schedule review focusing on critical path analysis
-Schedule updates occurred as needed with

- Revised estimates of task duration and

Changes to network schedule logic particularly when needed to facilitate schedule based corrective action

- Actual costs entered into the EVM and ES template as they became available (weekly)


## An Integrated Schedule Analysis Chart Critical Path, IECD, SPI(t) and SPI(\$) on one page



## Schedule Analysis

Initial expectation

- The critical path predicted completion date would be more pessimistic than the IECD
$\lrcorner$ In fact
- The ES IECD trend line depicted a "late finish" project with improving schedule performance
- The critical path predicted completion dates showed an "early finish project" with deteriorating schedule performance
- Became the "critical question" in Week 8
- ES IECD improvement trend reversed
- Continued deterioration in the critical path predicted completion dates


## Schedule Analysis Result

IECD the more credjble predictor in this circumstance
-Work was not being accomplished at the rate planned
-No adverse contribution by critical path factors
$\lrcorner$ e.g. Externally imposed delays caused by "dependent milestone ${ }^{\prime \prime}$
Two weeks schedule delay communicated to management
-Very late delay of schedule slippage a very sensitive issue

- Corrective action was immediately implemented

Resulted in two weeks progress in one week based on IECD improvement in week 9
-Project substantively delivered to the revised delivery date

## The IECD vs Critical Path Predictors

-Network schedule updates do not usually factor past (critical path) task performance into the future
Generally concentrate on the current time window

- Task updates

Corrective action to try and contain slippages
Critical path predicted completion date is not usually calibrated by past actual schedule performance
The ES IECD
-Cannot directly take into account critical path information
-BUT does calibrate the prediction based on historic schedule performance as reflected in the SPI(t)

## Further Observations

Much has been written about the consequences of not achieving work at the EVM rate planned
At very least, incomplete work needs to be rescheduled....
-Immediate critical vs non critical path implication requires detailed analysis of the network schedule
-Sustained improvement in schedule performance is a difficicult challenge

SPI $(t)$ remained in the .7 to .8 band for the entire project!
IIn spite of the corrective action and recovery effort
Any task delayed eventually becomes critical path if not completed
SPI(t) a very useful indicator of schedule performance

- Especially later in the project when SPI(\$) was resolving to 1.0


## Questions of Scale

$\lrcorner$ We know that ES is scalable as is EVM

- Issues of scale did not arise due to small size of the project $\triangle$ Detailed analysis of the ES metrics is required

The same as EVM for cost
The "masking" or "washout" effect of negative and positive ES variances at the detailed level can be an issue
-The same as EVM for cost
Apply Earned Schedule to the Control Accounts and Work Packages on the critical path
And "near" critical path activities
Earned Schedule augments network schedule analysis - it doesn't replace it
Just as EVM doesn't replace a bottom up ETC and EAC

Copyright 2005

## Real Schedule Management with

 Earned Schedule- ES is of considerable benefit in analysing and managing schedule performance
The "time critical" dichotomy of reporting "optimistic" predicted task completions and setting and reporting realistic completion dates was avoided
- ES metrics provided an independent means of sanity checking the critical path predicted completion date prior to communjcating overall schedule status to management
ES focused much more attention onto the network schedule than using EVM alone


## Final Thoughts

- ES is expected be of considerable value to the schedule management for large scale projects and programs
Exponential increase in the network scheduling complexities
Unavoidable and necessary on those programs and so
The need and benefit of an independent means of' sanity checking schedules of such complexity is much greater
Es is anticipated to become the "bridge" between $E \mathrm{VM}$ and the Network Schedule


# Network Schedule Analysis 

## Schedule Analysis with EVM?

$\lrcorner$ The general belief is EVM cannot be used to predict schedule duration
$\lrcorner$ Most practitioners analyze schedule from the bottom up using the networked schedule ...."It is the only way possible."

- Analysis of the Schedule is overwhelming
- Critical Path is used to shorten analysis
(CP is longest path of the schedule)

Copyright 2005
Lipke \& Henderson

Schedule Analysis with EVM?
$\lrcorner$ Duration prediction using Earned Schedule provides a macro-method similar to the method for estimating Cost A significant advance in practice

- But, there's more that ES facilitates ....


## Earned Schedule

 Bridges EVM to "Rea/" Schedule

Nov 7-9, 2005

## How Can This Be Used?

- Tasks behind - possibility of impediments or constraints can be identified
- Tasks ahead - a likelihood of future rework can be identified
The identification is independent from schedule efficiency
- The identification can be automated

> PMIs Can now have a schedule analysis tool connected to the EVMI Datal!

# Schedule Adherence 

## Schedule Adherence

EV isn't connected to task sequence Hypothesis: Completion sequence of tasks affects performance efficiency
Incorrect task sequencing occuis when there is ...

- Impediment or constraint
- Poor process discipline

Improper performance sequence may cause ...

- Overloading of constraint
- Performance of tasks w/o complete inputs

Copyright 2005
Lipke \& Henderson

## Schedule Adherence

- Result from improper performance sequence ...
- Constraint limited output

Schedule lengthens
Cost increases while waiting (when other EV available is severely limited)
Rework occurs ( $\sim 50 \%$ )
Schedule lengthens

- Cost escalates

Constraint problem \& Rework appear late causing ... - CPI \& SPI(t) to decrease as EV $\Rightarrow$ BAC

## Schedule Adherence

$\lrcorner$ Schedule Adherence measure is used to enhance the EVM measures

- Early warning for later cost and schedule problems
- Proposed Measure: In accordance with the project plan, determine the task's which should be completed or started for the duration associated with ES, Compare the associated PV with the EV of the task's which alirectly corresponal. Calculate the retio:

$$
\begin{aligned}
P= & \text { Tasks (perf-corr) } / \text { Tasks (plan) } \\
& =\Sigma E V j \text { (corresponding) } / \Sigma P V j \text { (plan) } \\
& \text { where } \Sigma E V j \leq \Sigma P V j \text { a } \Sigma P V j=E V
\end{aligned}
$$

## Schedule Adherence

$\Delta$ Characteristics of the P measure

- P measure cannot exceed 1.0

$$
0 \leq P \leq 1.0
$$

At project completion $P=1.0$
$P$ is likely unstable until project is $20 \%$ complete \{similar to the behavior of CPI\}

- Th́le 'beŕlavior off P rrlay ex,plairn Dr. C'frisisteriseris fifinglings for CPI \&s IEAC
- P used to compute effective earned value $\{\mathrm{EV}(\mathrm{e})\}$

Copyright 2005
Lipke \& Henderson

# Effective Earned Value 

## Discussion of EV Research

- CPI tends to worsen as EV $\Rightarrow$ BAC
- IEAC = BAC / CPI $\leq$ Final Cost when Percent Complete is $\geq 20 \%$
$\lrcorner$ IEAC condition must be true if CPI tendency is true
$\lrcorner$ Rationale supporting CPI tendency
- Rework increasing as EV approaches BAC

Late occurring impacts from constraints/impediments

- Lack of available EV toward end of project
 De'falve sifrilairly io CPI \& IEAC' = BAAC/CPI


## Effective Earned Value



## Effective EV Relationships

- P-Factor $($ or $P)=\Sigma E V j / \Sigma P V j=\Sigma E V j / E V$

$$
\Sigma E V j=P * E V
$$

$\mathrm{EV}(\mathrm{p})$ is portion of EV consistent with the plan $\operatorname{EV}(\mathrm{P})=\Sigma \mathrm{EV} j=\mathrm{P} * \mathrm{EV}$
$\mathrm{EV}(\mathrm{r})$ is portion of EV with anticipated rework

$$
\begin{aligned}
& E V(r)=E V-E V(p)=E V-P * E V \\
& E V(r)=(1-P) * E V
\end{aligned}
$$

## Effective EV Relationships

Rework proportion $(R \%)=f(r) / f(p)$

$$
\begin{aligned}
& f(r)=\text { fraction of EV }(r) \text { unusable } \\
& f(p)=\text { fraction of } E V(r) \text { usable } \\
& f(r)+f(p)=1
\end{aligned}
$$

- Portion of EV(r) usable

$$
\begin{aligned}
& f(p): R \%+f(p)=1 \\
& f(p)=1 /(1+R \%)
\end{aligned}
$$

## Effective Earned Value

Effective earned value is a function of $E V, P$, and Rework: $\mathrm{EV}(\mathrm{e})=\mathrm{f}(E V, P$, Rework)

$$
\begin{aligned}
E V(e) & =E V(p)+(\text { fraction usable }) * E V(r) \\
& =P * E V+(1 / 1+R \%) *[(1-P) * E V]
\end{aligned}
$$

$\lrcorner$ General equation for Effiective Earned Value
$E V(e)=[(1+P * R \%) /(1+R \%)] * E V$
Special case, when $\mathrm{R} \%=50 \%$

$$
E V(e)=[(P+2) / 3] * E V
$$

## Effective Earned Value

$\square$ Effective ES is computed using EV(e)
$\{i, e$, ES(e) \}

- Effective EV and ES indicators are ...
$-C V(e)=E V(e)-A C$
CPI $(e)=E V(e) / A C$
$-\mathrm{SV}(\mathrm{te})=\mathrm{ES}(\mathrm{e})-\mathrm{AT}$
- SPI(te) = ES(e) / AT

Graphs of CPI, CPI(e)
\& P - Factor (notional delis)


## Graphs of CPI \& SPI(t)

 with the $P$ - Factor

Summary: Effective Earned Value
$\lrcorner$ Lack of adherence to the schedule causes EV to misrepresent project progress
$\perp P$ indicator introduced to measure schedule adherence
$\lrcorner$ Effective EV calculable from P, R\% and EV reported
$\lrcorner$ Prediction for both final cost and project duration hypothesized to be improved with Effective Earned Value

# Available Resources 

## Publications

1. "Schedule is Different," The Measurable News, March \& Summer 2003 [Walt Lipke]
2. "Earned Schedule: A Breakthrough Extension to Earned Value Theory? A Retrospective Analysis of Real Project Data," The Measurable News, Summer 2003 [Kym Henderson]
3. "Further Developments in Earned Schedule," The Measurable News, Spring 2004 [Kym Henderson]
4. "Connecting Earned Value to the Schedule," The Measurable News, Winter 2004 [Walt Lipke]
5. "Earned Schedule in Action," The Measurable News, Spring 2005 [Kym Henderson]
6. "Not Your Father's Earned Value," Projects A Work, February 2005 [Ray Stratton]
hitto://sychney, pmichapters-austialilia,orgl,au/
Click "Education," then "Presentations and Papers" for .pdf copies

## Presentations

1. Earned Schedule - An Emerging Practice, $16^{\text {th }}$ IIPM Conference, November 2004 [Walt Lipke, Kym Henderson]
2. Schedule Analysis and Predictive Techniques Using Earned Schedule, $16^{\text {th }}$ IIPM Conference, November 2004 [Walt Lipke, Kym Henderson, Eleanor Haupt]
3. Earned Schedule - an Extension to EVM Theory, EVA-10 Conference (London), May 2005 [Walt Lipke, Kym Henderson]
4. Forecasting Proiect Schedule Completion by Using Earned Value Metrics, EVM Training at Ghent University (Belgium), January 2005 [Stephan Vandevoorde]
hittp://sychey, pmichapters-australia,org, alu/
Click "Education," then "Presentations and Papers" for .pdf copies

## Presentations

5. New Concept in Earned Value - Earned Schedule, PMI Southeast Regional Conference, June 2005 [Robert Handshuh]
6. Forecasting Proiect Schedule Completion by Using Earned Value Metrics, Early Warning Signals Congress (Belgium), June 2005 [Stephan Vandevoorde, Dr. Mario Vanhoucke]

## hitep://sychney.pnnichapters-australia,.orgla.au/ <br> Click "Education," then "Presentations and Papers" for .pdf copies

## Calculator \& Analysis Tools

$\lrcorner$ Freely provided upon email request - Application assistance if needed

- Please respect Copyright

Feedback requested

- Improvement / Enhancement suggestions
- Your assessment of value to Project Managers
- Disclosure of application and results (with organization permission)


## Contact Information

| Walt Lipke |  | Kym Henderson |
| :---: | :---: | :---: |
| Welitipike Gicoun net | Email | Eymuhenderson @uiroglyy. combulu |
| (405) 364-1594 | Phone | 61414428537 |

## Wrap-Up

## Summary

Derived firom EVM data ... only

- Provides time-based schedule indicators

Indicators do not fail for late finish projects
Application is scalable up/down, just as is EVM

- Schedule prediction is better than any other EVM method presently used
- SPI(t) behaves similarly to CPI
- IEAC(t) = PD / SPI $(t)$ behaves similarly to

IEAC = BAC / CPI

## Summary

Schedule prediction - much easier and possibly better than "bottoms-up" schedule analysis
$\lrcorner$ Facilitates bridging EVM to the schedule

- Identification of Constraints / Impediments and Rework
- Calculation of Schedule Adherence
- Creation of Effective Earned Value

$$
\begin{aligned}
& \text { Leads to insproved } \\
& \text { Schedule \& Cost Forecasting }
\end{aligned}
$$

## Conclusion

- "Whatever can be done using EVM for Cost Analysis can also be done using Earned Schedule for Schedule Analysis"

E Earned Schedule

- A powerful new dimension to Integrated Project Performance Management (IPPM)
A breakthrough in theory and application


College of Performance Management

## Appendix ES Calculation Exercise

## ES Exercise - Worksheet

| Jan | Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| BSWS(\$) | 105 | 200 | 515 | 845 | 1175 | 1475 | 1805 | 2135 | 2435 | 2665 | 2760 | 2823 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BCWP(\$) | 115 | 220 | 530 | 870 | 1215 | 1525 | 1860 | 2190 | 2500 | 2740 | 2823 |  |
| SV(\$) | 10 | 20 | 15 | 25 | 40 | 50 | 55 | 55 | 65 | 75 | 63 | ------ |
| SPI(\$) | 1.095 | 1.100 | 1.029 | 1.030 | 1.034 | 1.034 | 1.030 | 1.026 | 1.027 | 1.028 | 1.023 |  |



## Early Finish Project (Cumulative Values)

17th IIPMC Nov 7-9, 2005

Copyright 2005
Lipke \& Henderson

## ES Exercise - Worksheet



| BSWS(\$) | 105 | 200 | 515 | 845 | 1175 | 1475 | 1805 | 2135 | 2435 | 2665 | 2760 | 2823 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BCWP(\$) | 95 | 180 | 470 | 770 | 1065 | 1315 | 1610 | 1900 | 2150 | 2275 | 2425 | 2555 | 2695 | 2770 | 2823 |
| SV(\$) | -10 | -20 | -45 | -75 | -110 | -160 | -195 | -235 | -285 | -390 | -335 | $-268$ | -128 | -53 | 0 |
| SPI(\$) | 0.905 | 0.900 | 0.913 | 0.911 | 0.906 | 0.892 | 0.892 | 0.890 | 0.883 | 0.854 | 0.879 | 0.905 | 0.955 | 0.981 | 1.000 |



## Late Finish Project (Cumulative Values)

17th IIPMC Nov 7-9, 2005

Copyright 2005
Lipke \& Henderson

## ES Exercise - Answers

| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| BSWS(\$) | 105 | 200 | 515 | 845 | 1175 | 1475 | 1805 | 2135 | 2435 | 2665 | 2760 | 2823 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BCWP(\$) | 115 | 220 | 530 | 870 | 1215 | 1525 | 1860 | 2190 | 2500 | 2740 | 2823 |  |
| SV(\$) | 10 | 20 | 15 | 25 | 40 | 50 | 55 | 55 | 65 | 75 | 63 |  |
| SPI(\$) | 1.095 | 1.100 | 1.029 | 1.030 | 1.034 | 1.034 | 1.030 | 1.026 | 1.027 | 1.028 | 1.023 |  |


| Month Count | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ES(mo) | 1.105 | 2.063 | 3.045 | 4.076 | 5.133 | 6.152 | 7.167 | 8.183 | 9.283 | 10.789 | 12.000 | ------ |  |
| SV $(t)$ | 0.105 | 0.063 | 0.045 | 0.076 | 0.133 | 0.152 | 0.167 | 0.183 | 0.283 | 0.789 | 1.000 | ------ |  |
| SPI $(t)$ | 1.105 | 1.032 | 1.015 | 1.019 | 1.027 | 1.025 | 1.024 | 1.023 | 1.031 | 1.079 | 1.091 | ------ |  |

Early Finish Project (Cumulative Values)

17th IIPMC Nov 7-9, 2005

Copyright 2005
Lipke \& Henderson

## ES Exercise - Answers

| Year 01 |  |  |  |  |  |  |  |  |  |  |  | Year 02 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar |


| BSWS(\$) | 105 | 200 | 515 | 845 | 1175 | 1475 | 1805 | 2135 | 2435 | 2665 | 2760 | 2823 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BCWP(\$) | 95 | 180 | 470 | 770 | 1065 | 1315 | 1610 | 1900 | 2150 | 2275 | 2425 | 2555 | 2695 | 2770 | 2823 |
| SV(\$) | -10 | -20 | -45 | -75 | -110 | -160 | -195 | -235 | -285 | -390 | -335 | -268 | -128 | -53 | 0 |
| SPI(\$) | 0.905 | 0.900 | 0.913 | 0.911 | 0.906 | 0.892 | 0.892 | 0.890 | 0.883 | 0.854 | 0.879 | 0.905 | 0.955 | 0.981 | 1.000 |


| Month Count | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ES(mo) | 0.905 | 1.789 | 2.857 | 3.772 | 4.667 | 5.547 | 6.409 | 7.288 | 8.050 | 8.467 | 8.967 | 9.522 | 10.316 | 11.159 | 12.000 |
| SV(t) | -0.095 | $-0.211$ | $-0.143$ | -0.228 | -0.333 | -0.533 | -0.591 | -0.712 | $-0.950$ | -1.533 | -2.033 | -2.478 | -2.684 | $-2.841$ | -3.000 |
| SPI(t) | 0.905 | 0.894 | 0.952 | 0.943 | 0.933 | 0.911 | 0.916 | 0.911 | 0.894 | 0.847 | 0.815 | 0.794 | 0.794 | 0.797 | 0.800 |

## Late Finish Project (Cumulative Values)

17th IIPMC
Nov 7-9, 2005

Copyright 2005
Lipke \& Henderson


[^0]:    17th IIPMC
    Nov 7-9, 2005

[^1]:    17th IIPMC
    Nov 7-9, 2005

[^2]:    17th IIPMC
    Nov 7-9, 2005

